

Journal of Inclusion Phenomena and Macrocyclic Chemistry **37:** 121–130, 2000. © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

¹³C, ¹⁵N and ¹¹³Cd NMR and Molecular Orbital Studies of Novel Bile Acid *N*-(2-aminoethyl)amides and Their Cd²⁺-complexes

JARI TAMMINEN¹, ERKKI KOLEHMAINEN¹*, JUHA LINNANTO¹, PIRJO VAINIOTALO², SAMI VUORIKOSKI¹ and REIJO KAUPPINEN¹

¹Department of Chemistry, University of Jyväskylä, P.O.B. 35, FIN-40351, Jyväskylä, Finland; ²Department of Chemistry, University of Joensuu, P.O.B. 111, FIN-80101, Joensuu, Finland

(Received: 4 February 1999; in final form: 20 May 1999)

Abstract. Lithocholic acid *N*-(2-aminoethyl)amide (1) and deoxycholic acid *N*-(2-aminoethyl)amide (2) have been prepared and characterized by ¹H, ¹³C and ¹⁵N NMR. The accurate molecular masses of 1 and 2 have been determined by ESI MS. The formation of the Cd²⁺-complexes (1+Cd and 2+Cd) in CD₃OD solution have been detected by ¹H, ¹³C, ¹⁵N and ¹¹³Cd NMR. The ¹³C NMR chemical shift assignments of 1 and 2 and their Cd²⁺-complexes are based on DEPT-135 and z-GS ¹H, ¹³C HMQC experiments as well as comparison with the assignments of the related structures. The ¹⁵N NMR chemical shift assignments of the ligands and their Cd²⁺-complexes are based on z-GS ¹H, ¹⁵N HMBC experiments. ¹³C NMR chemical shift differences between 1 and its 1:1 Cd²⁺-complex based on *ab initio* calculations at Hartree-Fock SCI-PCM level using 3-21G(d) basis set are in agreement with the experimental shift changes observed on Cd²⁺-complexation.

Key words: bile acid amides, Cd²⁺-complexes, ¹³C, ¹⁵N and ¹¹³Cd NMR

1. Introduction

Bile acids possessing a hydroxy substituted steroidal framework and a flexible carboxylic acid side chain have been used as suitable building blocks in tailoring supramolecular hosts [1]. Consequently, the structural diversity and the variety of the molecular recognition properties of these steroidal hosts are increasing rapidly [2]. It has also been shown that significant advantages are achieved when hydroxyls are replaced by amino functionalities in constructing synthetic reseptors, novel amphiphiles and scaffolds for the assembly of combinatorial libraries [3]. Further, it is also known that bile acids generally exist in bile in the form of amino acid conjugates [4].

^{*} Author for correspondence.

Therefore, in order to tailor bile acid conjugates suitable for specific recognition of (cat)ions it is reasonable to introduce amino moieties into these structures. An approach is to attach diaminoalkanes to the carboxyl functionality of the bile acid and study the complex formation properties of these derivatives towards metal cations such as Cd^{2+} .

From the biochemical point of view it is interesting that cadmium can replace zinc and calcium in many biologically important molecules. Advantages of cadmium in comparison with zinc and calcium are that cadmium is much easier to detect by NMR and there exist good review articles on recent achievements in this area of chemistry [5]. This offers an efficient scope to investigate these nitrogen containing structures. Our present work is a continuation of our recent investigation on Ag⁺-cation complexation with the molecular clefts derived from isomeric pyridine carboxylic acids and lithocholic acid ethane-1,2-diol diester [6]. As an example of the specificity of the complex formation among these compounds the above mentioned pyridine derivatives did not show a clear complexation tendency with Cd^{2+} -cation differing from the amine derivatives studied in this work.

2. Experimental

2.1. COMPOUNDS

Lithocholic acid $(3\alpha$ -hydroxy-5 β -cholan-24-oic acid) and deoxycholic acid $(3\alpha, 12\alpha$ -dihydroxy-5 β -cholan-24-oic acid) were 98% products from Aldrich. Their *N*-(2-aminoethyl)amides **1** and **2** were prepared by a reaction of their methyl esters with 1,2-diaminoethane in methanol [7]. The reaction mixture was evaporated to dryness. The products were purified by repeated washing with chloroform. The yields were almost quantitative. All attempts to prepare symmetrical diamides failed. The Cd²⁺-complexation experiments of **1** and **2** were done by i) adding an equimolar amount of Cd(NO₃)₂·4H₂O to a 0.1 M solution of the ligands in CD₃OD and ii) then adding Cd(NO₃)₂·4H₂O to the solution until the ¹¹³Cd NMR signal of solvated Cd²⁺-cation was clearly visible and finally the solution was saturated by the salt. 1-Hexanoic acid *N*-(2-aminoethyl)amide used as a model compound was prepared via the reaction of 1-hexanoyl chloride (prepared from the acid by SOCl₂ treatment) and 1,2-aminoethane [8].

2.2. NMR AND MS

All ¹H,¹³C and ¹¹³Cd NMR experiments were carried out with a Bruker Avance DRX 500 NMR spectrometer equipped with a 5 mm diameter broad band direct probehead working at 500.13 MHz for ¹H, 125.77 MHz for ¹³C and 110.94 MHz for ¹¹³Cd, respectively. The ¹³C NMR chemical shift assignments are based on our previous studies on related structures [9], DEPT-135 and ¹H, ¹³C HMQC [10, 11] experiments. The ¹H, ¹⁵N HMBC experiments [12] have been run with a Bruker Avance DRX 500 or DPX 250 NMR spectrometer equipped with a 5 mm

Scheme 1. Structures and numbering of 1 (X=H) and 2 (X=OH).

diameter broad band inverse probehead and using z-gradient selection working at 500.13/250.13 MHz for ¹H and 50.70/25.35 MHz for ¹⁵N, respectively.

In ¹H NMR experiments the spectral width was 2500 Hz, the number of data points 32 K and the number of scans 8 with a flip angle of 30°. The FIDs were apodized by an exponential window function of point resolution prior to FT. The ¹H NMR chemical shifts are referenced to the residual signal of partly deuterated solvent, $\delta(CD_2^{-1}H) = 3.31$ ppm.

In proton composite pulse decoupled (Waltz-16) ¹³C NMR experiments the spectral width was 27 000 Hz, the number of data points 65 K and the number of scans 1000 with a flip angle of 30°. The FIDs were apodized by an exponential window function of the point resolution prior to FT. The ¹³C NMR chemical shifts are referenced to the signal of solvent, δ (¹³CD₃) = 49.0 ppm.

¹¹³Cd NMR experiments were done without proton decoupling. The spectral width was 67 000 Hz, the number of data points 65 K and number of scans varied from 10 000 to 50 000. The FIDs were apodized by an exponential window function of 50–100 Hz prior to FT. The ¹¹³Cd NMR chemical shifts are referenced to the signal of external 0.1 M aqueous Cd(ClO₄)₂ in a 1 mm diameter capillary tube inserted coaxially inside the NMR tube, δ (¹¹³Cd) = 0.0 ppm.

In ¹H,¹³C HMQC experiments the dimension of the f_1 -axis (¹H) was 2500 Hz/256 points and that of the f_2 -axis (¹³C) was 9000 Hz/512 points. 64 scans were accumulated for every f_2 -increment (f_1 -spectrum). Shifted sinebell window functions were used along both axes prior to FT.

In ¹H,¹⁵N HMBC experiments the dimension of the f₁-axis (¹H) was 2500 Hz/256 points and that of the f₂-axis (¹⁵N) was 22 500 Hz/512 points. A 50 ms delay was used for the evolution of long-range couplings. 64 scans were accumulated for every f₂-increment. Sinebell window functions were used along both axes prior to FT. The ¹⁵N NMR chemical shifts are referenced to the signal of external ¹⁵N-enriched nitromethane in a 1 mm diameter capillary tube inserted coaxially inside the NMR tube, δ (¹⁵N) = 0.0 ppm.

The molecular masses of compounds **1** and **2** were determined by electro-spray ionization using a Bruker (Bruker Daltonics, Billerica, USA) BioAPEXTM47e Fourier transform ion cyclotron resonance mass spectrometer equipped with a 4.7

Tesla, 160 mm bore superconducting magnet (Magnex Scientific Ltd, Abingdon, UK), InfinityTM cell and electrospray source (Analytica of Branford Inc., Branford, CT, USA). Sample solutions were continuously introduced to the interface sprayer through a glass microliter syringe at a flow rate of 40 μ l/h under atmospheric pressure. A 50:50:1 mixture of methanol:water:acetic acid was used as a solvent, the sample concentration being 1 pM/ μ l. Under these conditions only protonated molecules were observed.

The measurements were made in the broad band mode with a resolution of \geq 25000. The instrument was calibrated using sodium trifluoroacetate as external calibrant [13]. For accurate mass measurement a single scan was collected otherwise the spectra represented the average of 16 scans. The average precision of the accurate mass measurements was better than 5 ppm for six measurements.

Compound 1: $[M + H]^+$, $C_{26}H_{47}N_2O_2$, calculated mass 419.3632, measured mass 419.3628, mass deviation 1.2×10^{-4} . Melting point 162–165 °C. Compound 2: $[M + H]^+$, $C_{26}H_{47}N_2O_3$, calculated mass 435.3581, measured mass 435.3579, mass deviation 2.3×10^{-4} . Melting point 119–121 °C.

2.3. MOLECULAR ORBITAL CALCULATIONS

The geometry of compound **1** was initially fully optimized at the PM3 [14] level on a Silicon Graphics O2 workstation by using SPARTAN software [15]. After that the side chain of **1** with and without Cd^{2+} -cation in methanol was optimized at the *ab initio* Hartree-Fock (HF) level using the 3-21G(d) basis set and Self-Consistent Isodensity Polarized Continuum model (SCI-PCM) on a Silicon Graphics Origin 200 workstation by Gaussian 94 software [16]. Finally, the optimized substructures in methanol were used to compute ¹³C NMR chemical shift changes on complex formation.

3. Results and Discussion

The scheme describes the structures and numbering of lithocholic and deoxycholic acid *N*-(2-aminoethyl)amides **1** and **2** derived from methyl litho- or deoxycholate and 1,2-diaminoethane [7]. Tables I and II show the ¹³C, ¹⁵N and ¹¹³Cd NMR chemical shifts (δ /ppm) measured in CD₃OD for **1**, **2**, **1** + Cd and **2** + Cd. The z-gradient selected ¹H,¹⁵N HMBC contour map of **1** produced with a Bruker Avance DPX 250 spectrometer for saturated CD₃OD solutions at 30 °C using 100 ms delay for evolution of long-range couplings is described in Figure 1. Table III contains the experimental and calculated ¹³C NMR chemical shift changes ($\Delta\delta$ /ppm) of **1** on Cd²⁺-complexation. These calculations have been done at *ab initio* HF SCI-PCM level using 3-21G(d) basis set and limited only to one case (**1**) owing to their very CPU-time invasive character.

Table I. ¹³C NMR chemical shifts (ppm from CD₃OD δ = 49.0 ppm) of lithocholic acid *N*-(2-aminoethyl)amide **1** and deoxycholic acid *N*-(2-aminoethyl)amide **2** and their cadmium complexes, **1** + Cd and **2** + Cd

	δ(¹³ C)/p	pm		
Carbon	1	2	1 + Cd	2 + Cd
1 ^a	36.52	36.46	36.18	36.39
2	31.22	31.10	30.82	31.00
3	72.37	72.52	72.30	72.48
4 ^a	37.20	37.24	36.78	37.15
5	43.53	43.64	43.18	43.54
6 ^b	28.38	28.42	28.05	28.36
7 ^b	27.67	27.48	27.35	27.42
8 ^c	37.23	37.46	36.90	37.38
9	41.88	34.83	41.52	34.75
10	35.68	35.31	35.34	35.23
11	21.97	29.94	21.66	29.85
12	41.54	73.99	41.18	73.93
13	43.91	47.57	43.57	47.50
14	57.91	49.29	57.51	49.18
15	25.29	24.87	25.00	24.85
16 ^b	29.26	28.66	28.92	28.62
17	57.43	48.07	57.03	47.98
18	12.57	13.22	12.30	13.22
19	24.01	23.73	23.72	23.70
20 ^c	36.86	36.87	36.56	36.84
21	18.94	17.71	18.65	17.70
22 ^d	34.15	34.15	33.80	34.06
23 ^d	33.26	33.26	32.72	33.02
24	176.98	177.14	178.33	178.41
25	43.02	43.03	40.36	42.84
26	42.03	42.04	42.08	41.53

^{a,b,c,d}Assignments may be interchanged.

3.1. NMR SPECTROSCOPY

The formation of Cd²⁺-complexes in solution is detected unambiguosly by their ¹¹³Cd NMR chemical shifts (Table II) which differ significantly from that of the salt itself, Cd(NO₃)₂·4H₂O, in CD₃OD. The latter is shifted upfield (shielded) from the shift of the reference [0.1 M aqueous Cd(ClO₄)₂], δ (¹¹³Cd) = 0 ppm, while those of

		δ(¹⁵ N/nn	m)	$\delta(^{113}Cd/ppm)$
Compound	Solvent	NH ₂	NHCO	o(eu/ppiii)
1	CDCl ₃	-362.0	-268.0	_
1 ^a	CD ₃ OD	-364.0	-263.7	_
$1 + Cd^b$	CD ₃ OD	-370.3	-263.0	92
2 ^a	CD ₃ OD	-364.2	-263.8	_
$2 + Cd^b$	CD ₃ OD	-360.0	-263.6	84

Table II. ¹⁵N NMR chemical shifts (ppm from ext. neat CH₃NO₂, $\delta = 0.0$ ppm) and ¹¹³Cd NMR chemical shifts (ppm from ext. aqueous 0.1 M Cd(ClO₄)₂, $\delta = 0.0$ ppm) of **1** and **2** and their Cd²⁺-complexes

^aSaturated solution; ^b solution saturated with Cd(NO₃)₂·4H₂O.

Table III. Experimental and calculated ¹³C NMR chemical shift changes ($\Delta\delta$ /ppm) of **1** on complex formation with Cd²⁺-cation

	$\Delta\delta/\mathrm{ppm}$	
Carbon	Exp.	Calc.
22	+0.35	+0.47
23	+0.54	+0.71
24	-1.35	-3.50
25	+2.66	+1.98
26	-0.05	-0.12

the complexes are strongly deshielded (Table II). In the ¹³C NMR chemical shifts there also exist some changes observed on $Cd(NO_3)_2 \cdot 4H_2O$ addition but not so clear as those detected by ¹¹³Cd NMR. The most significant changes take place in the ¹³C NMR chemical shifts of C-24 (carbonyl) and C-25 (methylene carbon next to NH). The ¹³C NMR chemical shifts of the hydroxyl bearing carbon C-12 in **2** and **2** + **Cd** do not differ significantly supporting the above reasoning that the Cd²⁺-cation does not complex with that site of the molecule.

¹¹³Cd NMR experiments are also useful in observing the complexation strengths between **1** and **2**. Deoxycholic acid derivative **2** complexed Cd^{2+} -cation remarkably easier than the lithocholic acid derivative **1**. At a weighed 1:1 stoichiometric ratio of the ligand:Cd(NO₃)₂·4H₂O, the ratio of complexed and free cadmium was 1:10 for **1** and 7:10 for **2**, respectively. This difference between **1** and **2** can be explained by solvent effects and/or differences in molecular self-association

Figure 1. z-GS ¹H, ¹⁵N HMBC contour map of **1**.

properties (aggregate formation) which are typical for bile acid amine conjugates [17].

The ¹¹³Cd NMR chemical shifts for 1 + Cd and 2 + Cd are 92 and 84 ppm, respectively, when the solutions of their ligands are saturated by Cd(NO₃)₂·4H₂O (Table II). These values suggest that at these conditions the Cd²⁺:ligand molar ratio is 1:1 otherwise the ¹¹³Cd NMR chemical shifts of the complexes should be much more deshielded, as observed for [Cd(en)3]²⁺ type complexes [18]. This different behavior is understandable taking into account the larger size of the bile acid derived ligands 1 and 2 when compared with those of diaminoalkanes. It indicates that in addition to the bile acid amide ligand there must be solvent molecules coordinated with Cd²⁺-cation in these complexes to satisfy the coordination de-

mands of cadmium. That was one reason why the computationally heavy SCI-PCM model was used in the present theoretical calculations. Unfortunately, all attempts to measure samples at lower temperatures to slow down the chemical exchange and to see whether various complexed forms are present as in the case of pyridine complexes in ethanol at -90 °C [18] failed owing to sample precipitation and the poor quality of the spectra.

The ¹⁵N NMR chemical shifts of NH₂-nitrogens also show some changes upon Cd²⁺-complexation. Unfortunately, there are no reference data so far on the ¹⁵N NMR of cadmium complexes. The different complexation strengths and opposite signs of the ¹⁵N NMR chemical shift changes of N-1 in **1** and **2** upon complexation suggest that the bile acid moiety also has some influence on the complex formation, probably by differences in the self-association behavior of bile acid amine conjugates as proposed before. On the other hand, the sensitivity of the ¹⁵N NMR chemical shifts on solvent and concentration effects does not suggest more far reaching conclusions. In any case the amide bond formation causes a very strong deshielding effect on the nitrogen-15 chemical shift as reported before for example in the case of dipeptides [19].

In order to deepen the insight into the the role of bile acid moieties in the Cd²⁺complex formation NMR experiments with model compounds have also been performed. First, 0.1 M deoxycholic acid in CD₃OD was saturated by Cd(NO₃)₂·4 H₂O and the ¹³C NMR spectrum of this mixture was recorded. Any significant changes in the ¹³C NMR chemical shifts of deoxycholic acid, however, were not observed. The variation in the chemical shifts of C-3, C-7 and C-24 (possible sites for complexation) was less than 0.1 ppm. In agreement with this ¹³C NMR experiment, ¹¹³Cd NMR showed only the signal of the solvent complexed Cd²⁺cation. The solubility of lithocholic acid in methanol was so small that experiments with bile acids was limited only to deoxycholic acid. Second, 0.1 M 1-hexanoic acid *N*-(2-aminoethyl)amide was saturated by Cd(NO₃)₂·4H₂O and the ¹³C NMR spectrum of this solution was recorded. Now, clear changes were observed in the chemical shifts of the C=O-group as well as in the CH₂-signals of the ethyl amino moiety as in the case of bile acid amides. The $\Delta\delta$ -values were -0.27 (C=O), +1.08 (NHCH₂) and +0.40 ppm (CH₂NH₂), respectively.

These experiments reveal that the complexation site in bile acid amides must also be the CONH(CH₂)₂NH₂-moiety and the 3α -OH and 12α -OH-substituents are not directly involved in the complexation. On the other hand, owing to some differences in the ¹³C NMR chemical shift changes between bile acid and 1-hexanoic acid amides, there can be some forms where the bile acid aggregation can stabilize the Cd²⁺-complexes formed. However, the verification of all possible forms in this kind of dynamic system by NMR alone is a very tedious task and beyond the scope of this work. Unfortunately, all attempts to grow single crystals for X-ray diffraction studies failed.

Figure 2. The energetically most stable partial structure for $1:Cd^{2+}$ -complex.

3.2. MO CALCULATIONS

As mentioned above the final optimizations of the structures of ligand **1** and the complex **1** + **Cd** have been done at *ab initio* HF SCI-PCM level using the 3-21G(d) basis set. Calculations were limited only to one case owing to their very CPU-time invasive character: it is reasonable to assume that an additional hydroxyl at the 12α -position in **2** does not markedly influence the complexation behavior of Cd²⁺ with the —CONH(CH₂)₂NH₂ moiety. This hypothesis is also supported by NMR experiments as mentioned before. Figure 2 illustrates the energetically most favourable three-coordinated structure of Cd²⁺-cation with the above mentioned fragment. This structure is also in agreement with the experimental NMR data because clear changes are also observed on the complexation in the ¹³C NMR chemical shift of C-24. As mentioned before the ¹¹³Cd NMR chemical shifts of the complexes suggest 1:1 stoichiometry. Therefore, the Cd²⁺-complex with two bile acid derived ligands (1:2 stoichiometry) has not been considered as a potential structure to be studied and omitted from our theoretical calculations. Another reason is that those calculations would be very computational capacity and time consuming.

4. Conclusions

Multinuclear magnetic resonance methods can provide a versatile tool in characterizing the Cd²⁺-complexes of bile acid amine conjugates. Especially useful is ¹¹³Cd NMR which can be utilized in mimicking the complexation of the biochemically more important (non-toxic) Ca²⁺- and Zn²⁺-ions. Further, modern calculational methods with enormously increased computational power can predict ¹³C NMR chemical shift changes at least qualitatively correctly.

Acknowledgement

M.Sc. Mervi Haapala is gratefully acknowledged for the synthesis of 1-hexanoic acid N-(2-aminoethyl)amide.

References

- 1. A. P. Davis: Chem. Soc. Rev. 22, 243 (1993).
- (a) A. P. Davis, R. P. Bonar-Law, and J. K. M. Sanders: 'Receptors based on cholic acid', in Y. Murakami (ed.), *Comprehensive Supramolecular Chemistry*, Vol. 4, Elsevier Science Ltd., Oxford, 1996, pp. 257–286; (b) M. Miyata and K. Sada: 'Deoxycholic acid and related hosts', in D. D. MacNicol, F., and R. Bishop (eds.), *Comprehensive Supramolecular Chemistry*, Vol. 6, Elsevier Science Ltd., Oxford, 1996, pp. 147–176.
- 3. S. Broderick, A. P. Davis, and R. P. Williams: *Tetrahedron Lett.* **39**, 6083 (1998) and references cited therein.
- P. P. Nair and D. Kritchevsky: 'Chemistry of the bile acids', in P. P. Nair and D. Kritchevsky (eds.), *The Bile Acids: Chemistry, Physiology and Metabolism*, Vol. 1, Chemistry, Plenum Press, London, 1971, p. 8.
- 5. P. Granger: in P. S. Pregosin (ed.), Groups 11 and 12, Copper to Mercury in Studies in Inorganic Chemistry, Transition Metal Nuclear Magnetic Resonance, Elsevier, Amsterdam, 1991, p. 293.
- E. Kolehmainen, J. Tamminen, R. Kauppinen, and J. Linnanto: J. Incl. Phenom. Mol. Recogn. Chem. 35, 75–84 (1999).
- 7. P. S. Pandey and R. B. Singh: Tetrahedron Lett. 38, 5045 (1997).
- 8. Arthur Vogel: *Elementary Practical Organic Chemistry, Part I, Preparations*, Third edition revised by B. V. Smith and N. M. Waldron, Longman, London and New York, 1980, p. 225.
- (a) K. Lappalainen: *Ph.D. Thesis, Research Report No.* 62, University of Jyväskylä, Department of Chemistry, Finland (1997) and references cited therein; (b) E. Kolehmainen, J. Tamminen, K. Lappalainen, T. Torkkel, and R. Seppälä: *Synthesis*, 1082 (1996); (c) K. Lappalainen, E. Kolehmainen and J. Kotoneva: *Magn. Reson. Chem.* 34, 316 (1996).
- 10. A. Bax, R. H. Griffey, and B. L. Hawkins: J. Magn. Reson. 55, 301 (1983).
- 11. A. Bax and S. Subramanian: J. Magn. Reson. 67, 565 (1986).
- 12. A. Bax and M. F. Summers: J. Am. Chem. Soc.108, 2093 (1986).
- 13. M. Moini, B. L. Jones, R. , M. Rogers and L. Jiang: J. Am. Mass. Spectrom. 9, 977 (1998).
- 14. J. J. P. Stewart: J. Comp. Chem. 10, 209 (1989).
- 15. SPARTAN, Version 5.0.2 (Wavefunction Inc., Irvine, CA, 1991-7).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople: GAUSSIAN 94, Revision B.1, Gaussian Inc., Pittsburgh PA (1995).
- 17. A. F. Hofmann and D. M. Small: Ann. Rev. Med. 18, 333 (1967).
- 18. M. Munakata, S. Kitagawa, and F.Yagi: Inorg. Chem. 25, 964 (1986).
- S. Berger, S. Braun, and H.-O. Kalinowski: NMR Spectroscopy of the Non-Metallic Elements, John Wiley & Sons, Chichester, 1997, p. 231.